

Input
(part 2: input models)

2

Dealing with diversity

 Saw lots of diversity in devices
 actual details of devices (e.g., device drivers) is a real pain
 how do we deal with the diversity?

 Need a model (abstraction) for input
 like file systems abstract disks
 higher level & device independent

3

Logical device approach

 One approach “logical devices”
 A logical device is characterized by its software interface

(only)
 the set of values it returns

 Rest of semantics (how it operates) fixed by category of
device or left to the particular device

4

Logical device approach

 Fixed set of categories
 old “Core Graphics” standard had 6

 keyboard, locator, valuator, button
 pick, stroke

 If actual device is missing, device is simulated in
software
 valuator	 	 => simulated slider
 3D locator	 	 => 3 knobs

 1st step towards today’s interactors

5

Logical device approach

 Abstraction provided by logical device model is good
 But… abstracts away too many details (some are

important)
 example: mouse vs. pen on palm pilot

 Both are locators
 What’s the big difference?

6

Not a success but..

 Still useful to think in terms of “what information is
returned”

 Categorization of devices useful
 Two broad classes emerged

 Event devices
 Sampled devices

7

Categorization of devices

 Event devices
 Time of input is determined by user

 Best example: button
 When activated, creates an “event record” (record of

significant action)

8

Categorization of devices

 Sampled devices
 Time of input is determined by the program

 Best example: valuator or locator
 Value is constantly updated

 Might best think of as continuous

 Program asks for current value when it needs it

9

A unified model

 Anybody see a way to do both major types of devices in
one model?

10

A unified model: the event model

 Model everything as events
 Sampled devices are handled with “incremental change”

events
 Each measurable change in value produces an event

containing the new value
 Program can keep track of the current value if it wants to

sample

11

Simulating sampling under the
event model of input

 Can cause problems
 lots of little events

 Can fall behind if doing a lot of computation/redraw for
every event
 machines are fast, blah blah blah
 but can get behind (sampling provided built in throttling)

12

The event input model

 Almost all systems now use this

 An “event” is an indication that “something potentially
significant” has just happened
 in our case user action on input device
 but, can be generalized

13

The event input model

 “Event records” are data structures (or objects) that
record relevant facts about an event
 generally just called “events”

 Event records often passed to an “event handler” routine
 sometimes just encode relevant facts in parameters instead

of event record

 Terminology redux: Swing calls these event handlers listeners;
in other systems they are callbacks

14

Relevant facts

 What do we need to know about each event?

15

Relevant facts

 What
 Where
 When
 Value
 Additional Context

16

What

 What (exactly) caused the event
 e.g., left mouse button went down
 for “method based” systems this may be implicit in what

handler gets called

17

Where

 Where was the primary locator (mouse) when event
happened
 x,y position
 also, inside what window, object, etc.
 this is specific to GUIs, but it;s critical

 e.g., can’t tell what mouse button down means without
this

18

When

 When did the event occur
 Typically are dealing with events from the (hopefully recent)

past
 queued until program can get to them

 In absolute time or relative to some start point
 Hopefully at resolution of 10s of ms

 important for e.g., double-clicks

19

Value

 Input value
 e.g., ASCII value of key press
 e.g., value of valuator
 some inputs don’t have a value

 e.g. button press

20

Additional context

 Status of important buttons
 shift, control, and other modifiers
 possibly the mouse buttons

21

Example: Swing events

 Reuses and borrows heavily from AWT (it has to)
 A pretty generic / typical event model

 Lots (and lots) of hierarchy. Example:

java.lang.Object

java.util.EventObject

java.awt.AWTEvent

java.awt.event.ComponentEvent

java.awt.event.InputEvent

java.awt.event.MouseEvent

Object getSource()

int getID()

Component getComponent()

int getModifiers(); long getWhen()

int getButton(); int getClickCount();
Point getPoint(); ...

22

Common methods in Swing
events

 What
 getID() -- code for kind of event
 getClickCount() -- mouse only, indicates double-click, etc.

 Where
 getSource(), getComponent() -- component that event is “in”
 getX(), getY(), getPoint() -- location relative to that component

 When
 getWhen() -- timestamp in milliseconds

 Value
 getKeyChar(), getKeyCode() -- get information about keypresses

(for example)
 getModifiers() -- were shift, ctrl, meta, ... held down?

23

Extending the event model

 Events can extend past simple user inputs
 Extra processing of raw events to get “higher level” events

 window / object enter & exit
 list selection
 rearrangement of the interactor hierarchy

 Can extend to other “things of significance”
 arrival of network traffic

24

Extending the event model

 Window systems typically introduce a number of events
 window enter/exit region enter/exit

 system tracks mouse internally so code acts only at
significant points

 Redraw / damage events
 Resize & window move events

25

Synchronization and events

 The user and the system inherently operate in parallel
 asynchronously

 Means different programming model for applications
(asynchronous callbacks)

 Means special work for toolkit/window system
implementations

 This is a producer consumer problem
 user produces events
 system consumes them

26

Synchronization and events

 Need to deal with asynchrony
 both parties need to operate when they can
 but can’t apply concurrency control techniques to people

 How do we handle this?

27

Synchronization and events

 Use a queue (buffer) between

 As long as buffer doesn’t overflow, producer does not need
to block

 Consumer operates on events when it can

Producer Buffer Consumer

28

Implications of queued events

 We are really operating on events from the past
 hopefully the recent past

 But sampled input is from the present
 mixing them can cause problems
 e.g. inaccurate position at end of drag

29

Using events from an event
queue

 Basic paradigm of event driven program can be summed
up with one prototypical control flow
 Will see several variations, but all on the same theme

30

Using events from an event
queue

Main_event_loop()
init();
set_input_interests();
repeat

evt = wait_for_event();
case evt of

… dispatch evt -- send to some object
end case;
redraw_screen();

until done;

31

Using events from an event queue
 Very stylized code

 in fact, generally you don’t even get to write it
 often only provide system with routines/methods to call for

“dispatch”

repeat
evt = wait_for_event();
user_object.handle_event(evt);
redraw_screen();

until done;

32

Using events from an event
queue

 Two big questions:
 What object(s) gets the event?
 What does it do with it?

 Interpret it based on what the event is, what the object
is, and what state the object is in

33

Dispatch strategies: what object
gets the event

 Simple approach
 lowest object in interactor tree that overlaps the position

in event gets it
 if that object doesn’t want it, try its parent, etc.

 “Bottom first” dispatch strategy

34

Dispatch strategies: what object
gets the event

 Can also do “top-first”
 root gets it
 has chance to act on it, or modify it
 then gives to overlapping child
 has another chance to act on it if child (and its children)

doesn’t take it

 more flexible (get top-first & bottom-first)

35

But… a problem with fixed
dispatch strategies like this

 Does this work for everything?

36

But… a problem with fixed
dispatch strategies like this

 Does this work for everything?
 What about key strokes?
 Should these be dispatched based on cursor location?

 Probably not
 Probably want them to go to “current text focus”

37

Two major ways to dispatch
events

 Positional dispatch
 Event goes to an object based on position of the event

 Focus-based dispatch
 Event goes to a designated object (the current focus) no

matter where the mouse is pointing

38

Question

 Would mouse events be done by focus or positional
dispatch?

39

Question & answer

 Would mouse events be done by focus or positional
dispatch?

 It depends…
 painting: use positional
 dragging an object: need focus (why?)

40

Dragging an object needs focus
dispatch

 Why? What if we have a big jump?

 Cursor now outside the object and it doesn’t get the
next event!

Object

Previous mouse position

New mouse position

41

Positional and focus based
dispatch

 Will need both
 Will need a flexible way to decide which one is right

 will see this again later, for now just remember that
sometimes we need one, sometimes another

42

Positional dispatch

 If we are dispatching positionally, need a way to tell what
object(s) are “under” a location

 “Picking”

43

Picking

 Probably don’t want to pick on the basis of a point (single
pixel)
 Why?

44

Picking

 Probably don’t want to pick on the basis of a point (single
pixel)
 Why?
 Because it requires a lot of accuracy

 Instead may want to pick anything within a small region
around the cursor

45

Implementing pick

 Possible to apply a clipping algorithm
 small clip region around cursor
 pick anything that is not completely clipped away

46

Implementing pick

 Better is a recursive “pick traversal”
 Walk down the object tree
 Each object does a local test customized to its shape, state

(enabled or not), and semantics
 Also tests its children recursively

47

Pick ambiguity

 Classic problem, what if multiple things picked?
 Two types
 Hierarchical ambiguity

 are we picking the door knob, the door, the house, or
the neighborhood?

48

Pick ambiguity

 Spatial ambiguity
 Which door are we picking?

49

Solutions for pick ambiguity

 No “silver bullet”, but two possible solutions
 “Strong typing” (use dialog state)

 Not all kinds of objects make sense to pick at a given
time
 Turn off “pickability” for unacceptable objects

 reject pick during traversal

50

Solutions for pick ambiguity

 Get the user involved
 direct choice

 typically slow and tedious

 pick one, but let the user reject it and/or easily back out
of it
 often better
 feedback is critical

51

